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Abstract. A chain rule for calculating convexificators of composite functions of the type
f = h ◦ g, with the inner factor g being a transformation of R

n, is proposed. The proof
is based on a double application of a mean value theorem for (CF)-mappings due to
V.F. Demyanov and V. Jeyakumar (see [4]), along with a stability property for the support
of a certain ε-perturbation of (CF)-mappings.
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1. Introduction and Preliminaries

Let the function f : � → R be locally Lipschitz on an open set � ⊂ R
n.

Then its upper and lower Dini directional derivatives

f
↑
D(x, d)= lim sup

t↓0

f (x + td)−f (x)

t

and

f
↓
D(x, d)= lim inf

t↓0

f (x + td)−f (x)

t

are also Lipschitz as functions of the direction d.
The upper and lower Clarke directional derivatives are defined as follows

(see [2, 5]):

f
↑
cl (x, d)= lim sup

x
′ →x

t↓0

f (x
′ + td)−f (x

′
)

t
(1)

and

f
↓
cl (x, d)= lim inf

x
′ →x

t↓0

f (x
′ + td)−f (x

′
)

t
. (2)
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Since f is locally Lipschitz, the limits in (1) and (2) exist and are finite,
and the following properties hold:

f
↑
cl (x, d)= max

v∈∂clf (x)
〈v, d〉

and

f
↓
cl (x, d)= min

w∈∂clf (x)
〈w,d〉,

where

∂clf (x)= co
{
v ∈R

n | ∃{xk}: xk →x, xk ∈T (f ), f
′
(xk)→v

}

and T (f ) is the set of points of � where f is differentiable. The set
∂clf (x), called Clarke subdifferential of f at x, is a nonempty, convex and
compact set. We note that the relation that the Clarke subdifferential sat-
isfies is usually known as the strong convexificator condition.

Michel and Penot proposed the following generalized derivatives (see [6])

f ↑
mp(x, d)= sup

q∈Rn

{
lim sup

t↓0

f (x + t (d +q))−f (x + tq)

t

}
(3)

and

f ↓
mp(x, d)= inf

q∈Rn

{
lim inf

t↓0

f (x + t (d +q))−f (x + tq)

t

}
. (4)

We call (3) and (4) the upper and lower Michel–Penot directional derivative
of f at x in the direction d, respectively. Since f is locally Lipschitz, there
exists a convex compact set ∂mpf (x), called Michel–Penot subdifferential of
f at x, and the following properties hold:

f ↑
mp(x, d)= max

v∈∂mpf (x)
〈v, d〉

and

f ↓
mp(x, d)= min

w∈∂mpf (x)
〈w,d〉.

Let h : R
n → R be a positively homogeneous function of degree 1.

Demyanov introduced the concept of convexificator (see [3]). A convex
compact set C ⊂R

n is a convexificator (CF) of h if

min
w∈C

〈w,d〉�h(d)�max
v∈C

〈v, d〉 ∀d ∈R
n.
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We get

min
w∈∂clf (x)

〈w,d〉�f
↓
D(x, d)�f

↑
D(x, d)� max

v∈∂clf (x)
〈v, d〉.

Hence, the Clarke subdifferential of f at x is a convexificator of both func-
tions

h(d)=f
↑
D(x, d) and h(d)=f

↓
D(x, d).

Also we conclude that

min
w∈∂mpf (x)

〈w,d〉�f
↓
D(x, d)�f

↑
D(x, d)� max

v∈∂mpf (x)
〈v, d〉.

Thus, the Michel–Penot subdifferential of f at x is also a convexificator of
both functions

h(d)=f
↑
D(x, d) and h(d)=f

↓
D(x, d).

We call a convexificator C+(x) (C−(x)) of the function h(d) = f
↑
D(x, d)

(f ↓
D(x, d)) an upper (lower) convexificator of f at x. If C(x) is a convex-

ificator of both functions f
↑
D(x, d) and f

↓
D(x, d), we say that C(x) is a con-

vexificator of f at x.
Now we define a (CF)-mapping for a locally Lipschitz function, intro-

duced by Demyanov and Jeyakumar (see [4]). A mapping C+ (C−) : � →
2R

n

is an upper (lower) (CF)-mapping of f on � if for every x ∈ � the
convexificator C+(x) (C−(x)) satisfies the following inequalities

min
w∈C+(x)

〈w,d〉�f
↑
D(x, d)� max

v∈C+(x)
〈v, d〉 ∀d ∈R

n

(
min

w∈C−(x)
〈w,d〉�f

↓
D(x, d)� max

v∈C−(x)
〈v, d〉 ∀d ∈R

n

)
.

A mapping C: � → 2R
n

is called a (CF)-mapping of f if for every x ∈ �

the convexificator C(x) satisfies the inequalities

min
w∈C(x)

〈w,d〉�f
↓
D(x, d)�f

↑
D(x, d)� max

v∈C(x)
〈v, d〉 ∀d ∈R

n.

The following is the Mean-Value Theorem for a (CF)-mapping of f by
Demyanov and Jeyakumar (see [4]).
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THEOREM 1. (Mean-Value Theorem). Let C: � → 2R
n

be a (CF)-map-
ping of a locally Lipschitz function f . If the interval co{x1, x2} ⊂ �, then
there exist a γ ∈ (0,1) and a v ∈C(x1 +γ (x2 −x1)) such that

f (x2)−f (x1)=〈v, x2 −x1〉.

Let � : �→ 2R
n

be a set-valued map, where � is an open set ⊂R
n. We

define � to be upper semicontinuous at x ∈ � if for any ε > 0, there exists
some δ >0 such that

�(x
′
)⊂ �(x)+ εB for all x

′ ∈ x + δB,

where B is the open unit ball in R
n.

2. Main result

Let f =h ◦ g, where g: �→ R
n and h: R

n → R are locally Lipschitz func-
tions, and � is an open set ⊂ R

n. The component functions of g will be
denoted gi (i = 1,2, . . . , n) and B denotes the open unit ball in R

n. We
assume that each gi is Lipschitz at x and h is Lipschitz at g(x): this implies
that f is Lipschitz at x. Assume that Cgi

: � → 2R
n

and Ch: R
n → 2R

n

are
upper semicontinuous (CF)-mappings of gi and h, respectively.

LEMMA 1. Assume that d ∈R
n is fixed, and vε and v0 are given by

sup

{∑
i

βi〈αi, d〉: αi ∈Cgi
(xi), β ∈Ch(u), xi ∈x + εB,u∈g(x)+ εB

}

and

max

{∑
i

βi〈αi, d〉: αi ∈Cgi
(x), β ∈Ch(g(x))

}
,

respectively. Then limε→0+ vε =v0 holds.
Proof. Let any δ >0 be given. We can choose ε so that

Cgi
(x + εB)⊂Cgi

(x)+ δB, (5)

Ch(g(x)+ εB)⊂Ch(g(x))+ δB (6)

because Cgi
, Ch are assumed to be upper semicontinuous. Now it follows

that
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vε � sup
αi∈Cgi

(x)+δB

sup

{∑
i

βi〈αi, d〉: β ∈Ch(u), u∈g(x)+ εB

}

by (5)

� sup
αi∈Cgi

(x)+δB

sup
β∈Ch(g(x))+δB

{∑
i

βi〈αi, d〉
}

by (6)

�v0 +
∑

i

δ〈δ, |d|〉

�v0 +nδ2|d|.

Therefore vε is bounded above by v0 + nδ2|d| for all ε sufficiently small,
which yields limε→0+ vε =v0 since vε �v0.

LEMMA 2. Assume that d ∈R
n is fixed, and wε and w0 are given by

inf

{∑
i

βi〈αi, d〉 : αi ∈Cgi
(xi), β ∈Ch(u), xi ∈x + εB,u∈g(x)+ εB

}

and

min

{∑
i

βi〈αi, d〉 : αi ∈Cgi
(x), β ∈Ch(g(x))

}
,

respectively. Then limε→0+ wε =w0 holds.
Proof. The proof is similar to that of Lemma 1 except using the mini-

mum.

REMARK. We note that the set over which the maximum (minimum) in
Lemma 1 (2) is taken is the Cartesian product of compact sets (the under-
lying space is finite-dimensional) under compact-valued upper semicontinu-
ous maps. This guarantees the existence of the maximum v0 (minimum w0).
Also, we notice that vε, wε, v0, w0 in Lemmas 1, 2 are functions of d.

The following main theorem states that a convexificator for the compos-
ite function can be obtained as a set consisting of all linear combinations
of elements from convexificators of each component of g, with the coeffi-
cients in the combination being component of vectors from a convexifica-
tor for the outer factor h.
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THEOREM 2. (Chain Rule). Let f =h◦g, where g : �→R
n and h : R

n →R

are locally Lipschitz functions. Assume that Cgi
: �→2R

n

and Ch : R
n →2R

n

are upper semicontinuous (CF)-mappings of gi and h, respectively. Then the
set

{∑
i

βiαi : αi ∈Cgi
(x), β ∈Ch (g(x))

}
(7)

is a convexificator of f at x and

x �→
{∑

i

βiαi : αi ∈Cgi
(x), β ∈Ch (g(x))

}

is a (CF)-mapping of f .
Proof. Assume that d ∈R

n is fixed. We can find a positive t near 0 such
that

f (x + td)−f (x)

t
− ε �f

↓
D(x, d)�f

↑
D(x, d)� f (x + td)−f (x)

t
+ ε.

The degree of nearness is chosen to guarantee

td ∈ εB, g(x + td)∈g(x)+ εB.

By the Mean-Value Theorem in Preliminaries (Theorem 1), we may write

f (x + td)−f (x)=h (g(x + td))−h (g(x))

=
∑

i

βi {gi(x + td)−gi(x)}

where β ∈Ch(u) and u is a point in the segment [g(x + td), g(x)] and hence
in g(x)+εB. By another application of the Mean-Value Theorem, the last
term above can be expressed as

∑
i

βi〈αi, td〉

where αi ∈Cgi
(xi) and xi is a point in the segment [x + td, x] and hence in

x + εB. Therefore
∑

i

βi〈αi, d〉− ε �f
↓
D(x, d)�f

↑
D(x, d)�

∑
i

βi〈αi, d〉+ ε

holds. Then we have

wε − ε �f
↓
D(x, d)�f

↑
D(x, d)�vε + ε
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and hence

w0 �f
↓
D(x, d)�f

↑
D(x, d)�v0

where vε, wε, v0, w0 are defined and limε→0+ vε = v0, limε→0+ wε = w0 are
proved in Lemmas 1, 2 above. Therefore the set (7) is a convexificator of
f at x and thus

x �→
{∑

i

βiαi : αi ∈Cgi
(x), β ∈Ch (g(x))

}

is a (CF)-mapping of f as required.

EXAMPLE 1. Let f =h ◦ g, where g : �→ R
n and h : R

n → R are locally
Lipschitz functions. Then the set-valued maps x �→∂clgi(x) and x �→∂clh(x)

are (CF)-mappings which are upper semicontinuous. Therefore the set
{∑

i

βiαi : αi ∈ ∂clgi(x), β ∈ ∂clh (g(x))

}

is a convexificator of f at x and thus

x �→
{∑

i

βiαi : αi ∈ ∂clgi(x), β ∈ ∂clh (g(x))

}

is a (CF)-mapping of f by Theorem 2 above. More in general, we can find
the class of mappings called CUSCOs, whose (CF)-mappings are particular
examples (see [1]).
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